
Modular Demand-Driven Analysis of Semantic 

Difference for Program Versions
Anna Trostanetski, Orna Grumberg and Daniel Kroening

Computer Science Department, Technion

Programs often change and evolve, raising the following interesting question: how 

the behavior of the program change?
Changes are small, programs are big

Can our work be O(change) instead of
O(program)?

main

syntactically 
changed

call graph:

= ? ≠

Under-
approximation of 
the difference

Over-approximation 
of the difference

𝑝1Difference Summaries Input space

?

= ? ≠

𝑝2?

𝑝2

Symbolic Execution and Finite Paths:

𝑅𝜋 𝑥 = 𝑥 ≥ 0 ∧ 𝑥 − 1 ≥ 1
≡ 𝑥 ≥ 2

𝑇𝜋 𝑥 = 𝑥

x=0

x >= 1

x=-1

x=x+1

x < 0

F

F T

T

x := x-1

x == 1
T

F

We work bottom up from the syntactically changed procedures towards the main 

procedures, using the summaries.

= ? ≠

𝑝2?

= ? ≠

call 𝑝2

Summary of 𝒑𝟐

= ? ≠

𝑔1 𝑔2

…But what if we 

didn’t cover all paths?

We use individual and 

common uninterpreted

functions as abstraction.

= ? ≠

𝑝2?

call 𝑝1

Summary of 𝒑𝟏


