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Programs often change and evolve, raising the following interesting question: how 

the behavior of the program change?
Changes are small, programs are big

Can our work be O(change) instead of
O(program)?
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Symbolic Execution and Finite Paths:

𝑅𝜋 𝑥 = 𝑥 ≥ 0 ∧ 𝑥 − 1 ≥ 1
≡ 𝑥 ≥ 2
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We work bottom up from the syntactically changed procedures towards the main 

procedures, using the summaries.
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Summary of 𝒑𝟐
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…But what if we 

didn’t cover all paths?

We use individual and 

common uninterpreted

functions as abstraction.
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